NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology Mechanical Engineering (ME) Fourth Year

(Effective from the Session: 2023-24)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Mechanical Engineering

Evaluation Scheme

S	EMESTER -	VII

Sl. No	Subjet	Subject Name	P	erio	ds			End Semester		Total	Credit		
•	Codes		L	Т	Р	СТ	TA	TOTAL	PS	ТЕ	PE		
	WEEKS COMPULSORY INDUCTION PROGRA					Μ							
		Elements of Flexible											
1	AME0701	Manufacturing System	3	0	0	30	20	50		100		150	3
		and Process Engineering											
2		Departmrntal Elective-	3	0	0	30	20	50		100		150	3
2		V	5	0	U	50	20	50		100		150	5
3		Open Elective-II	3	0	0	30	20	50		100		150	3
4		Open Elective-III	3	0	0	30	20	50		100		150	3
5	AME0751	Model Based System	0	0	2				25		25	50	1
3	AIVIL0731	Engineering Lab.	U	0	2				23		23	50	1
6	AME0759	Internship Assessment-	0	0	2				50			50	1
0	ANILOTSY	III	U	U	2				50			50	1
7		MOOCs (Essential for											
/		Hons. Degree)											
		Total										700	14

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VII) B. Tech Students

S. No.	Subject Code	Course Name	University/ Industry Partner Name	N. of Hour s	Credits
1.	AMC0169	MBSE: Model-Based Systems Engineering	University at Buffalo, The state University of New York	21	1.5
2.	AMC0154	Cyber Security in Manufacturing	University at Buffalo, The state University of New York	22	1.5

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after semester-VI and will be assessed during Semester-VII

List of Department Elective :-

S.No.	Subject Code	Subject Name	Bucket Name	Semester
1	AME0711	Autonomous vehicles	Automotive Engineering	VII
2	AME0712	Smart Manufacturing	Industry 4.0	VII

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Mechanical Engineering

Evaluation Scheme SEMESTER - VIII

SI.	Subject	Subject Neme	Periods		Periods							nd ester	Total	Credit
No.	Codes	Subject Name	L	T	Р	СТ	ТА	TOTAL	P S	ТЕ	PE	Total	Creun	
1		Open Elective-IV	2	0	0	30	20	50		10 0		150	2	
2	AME0859/ AME0858	Capstone Project/Industrial Internship	0	0	18				20 0		30 0	500	10	
3		MOOCs (Essential for Hons. Degree)	0	0	0									
		Total										650	12	

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VIII) B. Tech Students

S. No.	Subject Code	Course Name	University/ Industry Partner Name	N. of Hours	Credits
1.	AMC0176	3D Printing Hardware	University of Illinois urbana- Champaign	31	2.5
2.	AMC0196	Roadmap to Success in Digital Manufacturing & Design	University at Buffalo, The state University of New York	18	1

S. No.	Subject Code	Course Name	University/ Industry Partner Name	N. of Hours	Credits
1.	AMC0215	Programming Fundamentals using Python - Part 1	Infosys Springboard	43 hours	3.5
2.	AMC0226	Learn How to Code The Complete Core Java Programming Course	Infosys Springboard	11 h 22m	0.5

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

<u>NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER</u> <u>NOIDA</u> <u>(An Autonomous Institute)</u>

AICTE Guidelines in Model Curriculum:

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

- 1. For 6 to 12 Hours =0.5 Credit
- 2. For 13 to18 =1 Credit
- 3. For 19 to 24 =1.5 Credit
- 4. For 25 to 30 = 2 Credit
- 5. For 31 to 35 = 2.5 Credit
- 6. For 36 to 41 =3 Credit
- 7. For 42 to 47 = 3.5 Credit
- 8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

i. If he / she secures 7.50 as above CGPA.

- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits

	B.TECH FOURTH YEAR				
Course Code	AME0701	LT]	P	Credit
C	Elements of Flexible Manufacturing System and	2 0			2
Course Title	Process Engineering	3 0		U	3
Course object	ive:				
comprehensive systems in mo integrates varie	of a course on Flexible Manufacturing Systems (FMS) is to pro understanding of the principles, concepts, and applications of fle dern manufacturing environments. FMS is a highly automated pr bus manufacturing processes and components to improve efficien manufacturing operations.	exible oduct	e n tio	nan n sy	ufacturin vstem that
1 0	Knowledge of manufacturing processes & machining centers				
	Course Contents / Syllabus				
UNIT-I	Basics of FMS				8 hour
Introduction ar	d classification of FMS, Automated production cycle, Need, conc	ept ar	nd	me	asuremen
of flexibility,	Types of flexibilities and its measurement, Economic justification	ation	an	d I	Functiona
requirements o	f FMS, FMS processing and quality assurance equipment, e.g., tu	Irning	a	nd 1	nachinin
centers, Co-or	dinate measuring machines, Cleaning and deburring machines,	, AM	H	S e	quipmen
cutting tool and	l tool management, Future trends of Flexible Manufacturing System	1.			
UNIT-II	Group Technology				8 hour
	of GT, Part family formation-coding and classification sys				. 1 •
and graph theo of parameters mathematical	Methods for cell formation, Use of different algorithms, mather retic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approa approach over conventional approach, solving optimization m	matica ng pa aches,	al ira: a	prog met dva	grammin ers: effec ntages c
and graph theo of parameters mathematical processes.	Methods for cell formation, Use of different algorithms, mathematic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach	matica ng pa iches, iodels	al ira: a	prog met dva	grammin ers: effec ntages c
and graph theo of parameters mathematical processes. UNIT-III	Methods for cell formation, Use of different algorithms, mather retic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approa approach over conventional approach, solving optimization m	matica ng pa aches, aodels	al tra: a s c	prog met dva of 1	grammin ers: effeo ntages o nachinin 8 hour
and graph theo of parameters mathematical processes. UNIT-III Manufacturing	Methods for cell formation, Use of different algorithms, mathemetic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization methods bases in Flexible Manufacturing systems and its implementation	matica ng pa aches, aodels	al trat a c	prog met dva of 1	grammin ers: effec ntages c nachinin 8 hour ufacturin
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations	Methods for cell formation, Use of different algorithms, mathemetic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization methods bases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design	matica ng pa aches, aodels	al trat a c	prog met dva of 1	grammin ers: effec ntages c nachinin 8 hour ufacturin
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and expe	Methods for cell formation, Use of different algorithms, mathemetic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization methods bases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance	matica ng pa aches, aodels	al trat a c	prog met dva of 1	grammin ers: effec ntages o machinin 8 hou ufacturin rformanc
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and expe UNIT-IV	Methods for cell formation, Use of different algorithms, mather retic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approa approach over conventional approach, solving optimization m Data bases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance ctation, maintenance	matica ng pa nches, nodels n and testir	al ura: a ; c n ng,	prog met dva of 1 nan Per	grammin ers: effec ntages o nachinin 8 hou ufacturin rformanc 8 hou
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and expe UNIT-IV Introduction to	Methods for cell formation, Use of different algorithms, mathemetic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization methods bases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance ctation, maintenance Introduction to CAPP	matica ng pa nches, nodels n and testir roces	al ura: a s c n ng, s p	pro met dva of 1 nan Per	grammin ers: effec ntages o machinin 8 hour ufacturin rformanc 8 hour ning ove
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and exper UNIT-IV Introduction to CAPP, Genera	Methods for cell formation, Use of different algorithms, mather retic model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approa approach over conventional approach, solving optimization m Data bases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance ctation, maintenance Introduction to CAPP o CAPP: Role of process planning, advantages of conventional p	matica ng pa nches, nodels n and testir roces em. I	al ura: a s (n ng, s p Det	prog met dva of 1 nan Per	grammin ers: effec ntages of nachinin 8 hour ufacturin rformanc 8 hour ning ove ination of
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and expe UNIT-IV Introduction to CAPP, General manufacturing	Methods for cell formation, Use of different algorithms, mathemeteric model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization methods bases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance ctation, maintenance Introduction to CAPP CAPP: Role of process planning, advantages of conventional p tive CAPP system: Importance, principle of Generative CAPP system:	matica ng pa nches, nodels n and testir roces em. I integ	al ura: a s c n ng, s p Det rat	prog met dva of 1 nan Per olan erm ion	grammin ers: effec ntages c machinin 8 hour ufacturin rformanc 8 hour ning ove ination c of desig
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and expe UNIT-IV Introduction to CAPP, General manufacturing	Methods for cell formation, Use of different algorithms, mathemeteric model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization metatabases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance ctation, maintenance Introduction to CAPP CAPP: Role of process planning, advantages of conventional ptive CAPP system: Importance, principle of Generative CAPP systet tolerances: Methods of tolerance allocation, sequential approach, ring tolerances. Determination of optimal index positions for exect	matica ng pa aches, nodels n and testir roces em. I integ	al ura: a s c n ng, s p Det rat	prog met dva of 1 nan Per olan erm ion	grammin ers: effec ntages c machinin 8 hour ufacturin rformanc 8 hour ning ove ination c of desig
and graph theo of parameters mathematical processes. UNIT-III Manufacturing considerations goals and expe UNIT-IV Introduction to CAPP, General manufacturing and manufactu	Methods for cell formation, Use of different algorithms, mathemeteric model approach for part grouping. Determination of machini on production rate, cost and surface quality, different approach approach over conventional approach, solving optimization metatabases in Flexible Manufacturing systems and its implementation data systems, manufacturing data flow, computer-aided design when planning for FMS, Implementation objectives, acceptance ctation, maintenance Introduction to CAPP CAPP: Role of process planning, advantages of conventional ptive CAPP system: Importance, principle of Generative CAPP systet tolerances: Methods of tolerance allocation, sequential approach, ring tolerances. Determination of optimal index positions for exect	matica ng pa aches, nodels n and testir roces em. I integ	al ura: a s c n ng, s p Det rat	prog met dva of 1 nan Per olan erm ion	grammin ers: effect ntages of machinin 8 hour ufacturin rformanc 8 hour ning ove ination of of desig

	and and forward approach, feature based and CAD based CAPP.	
Course	e outcome: After completion of course students will be able to	
COULSC CO 1	The understanding about factors responsible for the growth of FMS, FMS types and	
01	applications, Economic justification for FMS, Co-ordinate measuring machines, Cleaning and deburring machines, FMS system support equipment	K ₂
CO 2	Ability to know about the concept of GT, Part family formation-coding and classification systems, mathematical programming and graph theoretic model approach for part grouping, Cellular vs. FMS production.	K ₃
CO 3	Ability to understand CAPP system: Importance, principle of Generative CAPP system.	K ₂
CO 4	Ability to understand the concept of Quantitative methods, Implementation techniques for CAPP, criteria for selecting a CAPP system and benefits of CAPP	K ₂
CO 5	Apply materials planning and control techniques to effectively manage the flow of materials within the organization	K ₃
Text be	ooks :	•
4. F	Flexible Manufacturing System – Wernecks (Spring- Verlag). Flexible Manufacturing Cells and systems – W. W.Luggen (PHI) FLOCAM- P. N. Rao(Tata McGraw Hill)	
4. F 5. C 6. N S	 CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manuface System, Prentice Hall, 2007. 	
4. F 5. C 6. N S Refere	 CAD/CAM- P. N. Rao(Tata McGraw Hill) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manuface System, Prentice Hall, 2007. 	eturing
4. F 5. C 6. N S Refere 1. F	 CAD/CAM- P. N. Rao(Tata McGraw Hill) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manufac System, Prentice Hall, 2007. Ince Books: Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic	eturing
4. F 5. C 6. M S Referen 1. H S 2.	 CAD/CAM- P. N. Rao(Tata McGraw Hill) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manuface System, Prentice Hall, 2007. 	ic Press,
4. F 5. C 6. M 8 Referen 1. F 8 2. 3.	 CAD/CAM- P. N. Rao(Tata McGraw Hill) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manufactory Computer Mall, 2007. Ince Books: Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic San Diego, California). Automation, Production System & Computer Integrated Manufacturing-Gro (PHI).	ic Press,
4. F 5. C 6. M S Referen 1. H S 2. 3. Link: N	 Selexible Manufacturing Cells and systems – W. W.Luggen (PHI) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manufactystem, Prentice Hall, 2007. nce Books: Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academi San Diego,California). Automation, Production System & Computer Integrated Manufacturing-Gro (PHI). Performance Modelling of Automated Manufacturing Systems –Vishwanathan&Nara NPTEL/ YouTube/ Faculty Video Link: 	eturing ic Press, over
4. F 5. C 6. M 8 Referen 1. F S 2. 3. Link: N Unit 1	Flexible Manufacturing Cells and systems – W. W.Luggen (PHI) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manufactory System, Prentice Hall, 2007. Ince Books: Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic San Diego, California). Automation, Production System & Computer Integrated Manufacturing-Groe (PHI). Performance Modelling of Automated Manufacturing Systems –Vishwanathan&Nara NPTEL/ YouTube/ Faculty Video Link: https://onlinecourses.nptel.ac.in/noc21_me83	ic Press,
4. F 5. C 6. M 8 Referen 1. F S 2. 3. Link: M Unit 1 Unit 2	Flexible Manufacturing Cells and systems – W. W.Luggen (PHI) CAD/CAM- P. N. Rao(Tata McGraw Hill) Aikell P. Groover, Automation, Production systems and Computer Integrated Manufactives Experimental Action Prentice Hall, 2007. Ince Books: Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic San Diego, California). Automation, Production System & Computer Integrated Manufacturing-Gro (PHI). Performance Modelling of Automated Manufacturing Systems –Vishwanathan&Nara NPTEL/ YouTube/ Faculty Video Link: https://onlinecourses.nptel.ac.in/noc21_me83 https://www.youtube.com/watch?v=OG-1Xy1OpUM	ic Press,
4. F 5. C 6. M 8 Referen 1. F 8 2. 3.	Flexible Manufacturing Cells and systems – W. W.Luggen (PHI) CAD/CAM- P. N. Rao(Tata McGraw Hill) Mikell P. Groover, Automation, Production systems and Computer Integrated Manufactory System, Prentice Hall, 2007. Ince Books: Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic San Diego, California). Automation, Production System & Computer Integrated Manufacturing-Groe (PHI). Performance Modelling of Automated Manufacturing Systems –Vishwanathan&Nara NPTEL/ YouTube/ Faculty Video Link: https://onlinecourses.nptel.ac.in/noc21_me83	ic Press,

	B.TECH FOURTH YEAR				
Subject Code	AME0751	L	Т	Ρ	Credit
Subject Name	Model Based System Engineering Lab	0	0	2	1
Course Objective-	The course aims to provide students with a comprehensive	e unde	erstanc	ling of	f Model-Based
Systems Engineering	g (MBSE) principles and techniques. Throughout the course,	stude	nts wi	ll delv	e into various
aspects of MBSE, i	ncluding requirements elicitation and modeling, system a	rchited	ture d	lesign	and analysis,
behavioral modeling	and simulation, trade-off analysis, and decision-making.				

Course	At the end of course, the student	
outcome:	will be able to	
CO1	understand of the fundamental principles, methodologies, and best practices of MBSE, including requirements elicitation, system architecture design, and behavioral modeling.	K2
CO2	use MBSE tools and software to create and manage system models, perform analysis and simulations, and facilitate collaboration and communication among team members.	K2
CO3	to apply MBSE techniques, such as use case diagrams, activity diagrams, and requirements diagrams, to effectively capture, model, and analyze system requirements, behavior, and interactions.	K2
CO4	acquire skills in designing and analysing system architectures, performing trade-off analysis, considering factors like cost, performance, reliability, and risk, and making informed design decisions based on MBSE models.	K2
CO5	demonstrate the ability to identify system performance bottlenecks, analyze system behavior, and apply optimization techniques to improve system performance and meet desired requirements. Develop problem-solving skills by addressing real-world challenges in system integration, safety analysis, change management, and validation testing using MBSE approaches	K2

Total No. of Practical

List of Practical:-

1	Objective: Elicit system requirements from stakeholders and create a requirements model using MBSE techniques such
	as use case diagrams, activity diagrams, and requirements diagrams.
2	Objective: Design and analyze the system architecture using MBSE tools, focusing on components, interfaces, and
	interactions. Perform structural and behavioral analysis of the architecture model.
	Objective: Model the system behavior using dynamic behavior diagrams (e.g., activity diagrams, statecharts) and
3	simulate the behavior using MBSE tools. Analyze the system performance and validate the model against the desired
	behavior.
	Perform trade-off analysis using MBSE models to evaluate and compare different design alternatives. Consider factors
4	such as cost, performance, reliability, and risk to make informed design decisions.
5	Design and execute validation tests based on the system model to ensure that the system meets the specified
5	requirements. Analyze the test results and refine the system model accordingly.
	Manage system changes using MBSE tools and techniques. Introduce changes to the system model, analyze their
6	impact, and update the model accordingly. Evaluate the effectiveness of the change management process.
	System Integration and Interface Design Objective: Design and manage system interfaces using MBSE tools. Ensure
7	proper integration and communication between system components. Analyze the impact of interface changes on the
	system behavior.

8	Analyze the performance of the system model, such as response time, throughput, and resource utilization. Apply
	optimization techniques to improve system performance and validate the optimized model.
9	Perform safety analysis using MBSE techniques (e.g., fault trees, hazard analysis) to identify potential hazards and
	mitigate risks. Update the system model to incorporate safety requirements.
10	Collaborate with team members using MBSE tools to enable concurrent engineering, version control, and efficient
	communication of system design information. Evaluate the effectiveness of collaboration processes.

			B.TECH	FOUR	ГН ҮЕАН	R				
Course	Code	AME0711				L	Т	Р	C	redit
Course '	Title	itle Autonomous vehicles					0	0	3	
technolo vehicles.	rate syst gy in ve To intro	e: ematic approache hicle hardware an oduce the latest tre le longitudinal co	d software an ends and tech	rchitectur	es. To deve	lop safe	ty ass	urance	e for Au	tonomous
Pre-req	uisites: L	Inderstanding of	AI & logistics	s. Basics o	f self-drivin	g cars &	contr	ol sys	tems. Ki	nowledge
of Mech	atronics.									
			-		/ Syllabus					
UNIT-I		oduction to Self-Dri								8 hours
		Requirements for	•	-	Taxonomy,	Percep	tion, a	and D	riving I	Decisions,
Ŭ		ny, Perception, and	Ũ						i	
UNIT-II		Driving Hardware								8 hours
		f Autonomous Vo nardware, hardwar			ware and I	Environn	nent I	Repres	sentation	, Sensors
UNIT-II	I Safe	ty Assurance for A	utonomous Ve	ehicles						8 hours
Industry	methods	for safety assurar	nce and testin	ng, safety	frameworks	for self	drivir	ng.		
UNIT-I	V Veh	icle Dynamic Mode	ling							8 hours
Kinemati	c modelin	g in 2D, Kinematic I	picycle model,	Dynamic ı	modeling in 2	2D, Later	al Dyna	amics		
UNIT-V	/ Veh	icle Longitudinal Co	ontrol							8 hours
Proportio	onal-Inte	gral-Derivative (P	ID), Longitu	dinal spee	ed control w	vith PID,	Feed	forwa	rd speed	l control.
Course	outcome	: After completio	on of course s	students	will be able	e to				
CO 1		and the concept of								K ₃
CO 2	Explain	the basic concepts of	of hardware ar	nd softwar	e architectu	res.				K ₃
CO 3	Know on the safety assurance for Autonomous vehicles.			K ₃						
CO 4	Understand and explain latest trends and technology in vehicle dynamic modeling			K ₄						
CO 5	Understand the concept related to vehicle long			e longitud	inal control.					K ₃
Text bo	oks :									I
2. Auton Referen	nated Dri ce Book		Assistance Sys	stems by						
Autonon	nous Vel	icles for Safer Dr	iving by Ron	ald K. Ju	gen, SAE I	nternatio	onal			

Link: NPTEL/ YouTube/ Faculty Video Link:				
Unit 1	https://onlinecourses.nptel.ac.in/noc21_me83			
Unit 2	https://www.youtube.com/watch? v=kpDohGBhR_0&list=PL_GRDTAcxPdUPJZrW9bO85Ab2fESTMRHU&index=1			
Unit 3	https://www.youtube.com/watch?v=oE_2rBxNrfc			
Unit 4	https://www.youtube.com/watch?v=powT52Isd-Q&list=PLEzzQIuBvBkoqJOP2IL3Elt6Ra8j4zFL3			
Unit 5	https://www.youtube.com/watch?v=LZ82iANWBL0&list=PLbMVogVj5nJTW50jj9_gvJmdwFWHaqR5J			

B.TECH FOURTH YEAR Course Code Р **AME0712** L Т Credit **Course Title** 3 0 0 3 **Smart Manufacturing Course objective:** This course is intended to make the students learn the fundamentals of digital twins, including their types, benefits, challenges, and best practices. Also, the understanding of the various components of a smart factory and the role they play in optimizing the production process, principles and techniques used to design, analyze, and implement Cyber Physical Systems. connected manufacturing, which is the integration of digital technology into industrial processes and lastly the fundamental principles and methods used in cognitive systems. **Pre-requisites: Course Contents / Syllabus** UNIT-I **Digital Twins** 8 hours Introduction - Definition and history of digital twins, Types of digital, Applications of digital twins in various industries. Benefits of digital twins, Challenges of digital twins. Tools and Techniques - Digital twin software and platforms, Data acquisition and integration techniques, Modeling and simulation techniques. Applications in Industry - Digital twins in manufacturing, Digital twins in healthcare, Digital twins in construction. Miscellaneous - Ethical, Legal, and Social Implications of Digital Twins, Future of Digital twins, Emerging Trends and Opportunities, Implications for society and the economy. UNIT-II Self-Driving Hardware and Software Architectures 8 hours Introduction - Definition of smart factory, Historical perspective of manufacturing, Key drivers for smart factory implementation, Components of smart factory. Architecture of Smart Factory - Layers of smart factory architecture, Communication protocols in smart factory, Cloud computing and edge computing in smart factory. Benefits of Smart Factory - Increased productivity, Enhanced quality, Improved safety, Better flexibility and customization, Reduced costs. Challenges and Risks - Data security and privacy concerns, Workforce reskilling and training, Integration with legacy systems, Initial costs and Return on Investment. UNIT-III 8 hours **Cyber Physical Systems** Introduction - Definition of CPS, Historical development and current trends, Examples of CPS applications. Devices used in CPS - Sensors and Actuators, Sensor fusion and data integration, Actuator control and feedback, PID controllers, Model-based control. Real-Time Systems - Real-time scheduling, Deadline analysis, Timing analysis. Networking for CPS - Wired and wireless networks, Network protocols for CPS, Quality of Service (QoS) in CPS. Security and Privacy challenges in CPS. Future trends and Opportunities in CPS. **UNIT-IV Connected Manufacturing** 8 hours Introduction – Definition, History and evolution of connected manufacturing, Key components of connected manufacturing, Benefits of connected manufacturing. IoT and Connected Devices - Overview of IoT and its

applications in industrial settings, Sensors and connected devices in manufacturing, Security and privacy

considerations. Artificial Intelligence - Applications of AI in manufacturing, Use of AI for predictive maintenance and quality control. Data Analytics and Cloud Computing - Overview of data analytics and its applications in industrial settings, Use of cloud computing for data storage and processing, Real-time data analytics and its impact on manufacturing processes. Future of connected manufacturing.

UNIT-VCognitive Systems8 hoursIntroduction - Overview of the field of cognitive systems, Historical background, Key challenges in
cognitive systems. Cognitive Architectures - Introduction to cognitive architectures, Comparison of
different architectures. Perception and Attention – Overview, Models of visual and auditory perception,
Attention and its role in cognition. Memory and Learning - Introduction to memory and learning in
cognitive systems, Models of human memory and learning. Decision-Making - Overview of decision-
making in cognitive systems, Rational and heuristic decision-making models. Natural Language Processing
- Introduction to natural language processing in cognitive systems, Models of syntax and semantics. Case
Studies: Cognitive systems in real-world applications (e.g., robotics, human-computer interaction),
Discussion of ethical and social implications of cognitive systems.

Course outcome: After completion of course students will be able to

CO 1	Define the concept of digital twins and identify their types and applications.	К2		
CO 2	Define the concept of a smart factory and its various components and Understand the	К2		
	architecture of a smart factory			
CO 3	Understand the fundamental principles and concepts of Cyber-Physical Systems	К2		
CO 4	Define connected manufacturing and understand its various components and analyze its	К2		
	impact on industrial processes.			
CO 5	Understand the key concepts and theories in cognitive systems research	К2		
Text be	poks :			
	dustry 4.0: The Industrial Internet of Things" by Alasdair Gilchrist, published by Wiley.			
2. "Si	nart Factory: Concepts and Technologies" by Liang Xu, Jiafu Wan, and Hong Wang, published b	by Springer.		
3. "D	igital Twin Technologies and Smart Cities" by Subhasish Dasgupta, published by CRC Press			
Refere	nce Books:			
1 . "C	yber-Physical Systems: From Theory to Practice" by Rajeev Alur and Insup Lee, published by Th	ne Institution		
of Engineering and Technology (IET)				
2. "C	ognitive Systems: Human Cognitive Models in Systems Design" by Chris Forsythe and Wayne G	iray,		
pu	published by Psychology Press.			

Link: NPTEL/ YouTube/ Faculty Video Link:

Unit 1	(207) What is a Digital Twin? - YouTube
Unit 2	(207) Industry 4.0 - "Smart Factory" explained - YouTube
Unit 3	Introduction to Cyber-Physical Systems - YouTube
Unit 4	Connected Manufacturing webinar recording - YouTube
Unit 5	(207) Cognitive Systems Colloquium Introduction - YouTube